skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "J_Wright, Sarah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Taiar, Redha (Ed.)
    Neonatal brachial plexus palsy is a birth process-related injury that affects 1–2/1000 infants, with about 10% of those having a permanent deficit that can affect the muscle strength, range of motion, and sensation of the upper extremity. While computational models make the most sense for investigation of injury mechanisms in the vulnerable infant population, the models remain very simplified – incorporating only a single indicator nerve that mimics the response of the C5 nerve root rather than taking into consideration the complex, 3D anatomy of the plexus. Two existing finite element models of the adult brachial plexus have been published – but neither attempts to model the complex anatomy of the plexus through the divisions, cords, and terminal nerves. This project involved the development of an anatomically appropriate 3D model of the infant brachial plexus. This is the first published finite element model of the full, complex anatomy of the brachial plexus and the first that includes an appropriate anatomy for an infant. The model was then used to better understand the pattern and progression of brachial plexus injury that has been observed clinically in neonates. The model was able to predict a stress distribution that aligns with the C5 nerve root being the location of initial injury. It also demonstrated how the stress in remaining, intact nerve roots will increase when rupture or avulsion of C5 and then C6 occurs – which matches the progression of the injury from the upper plexus (an Erb’s Palsy) to the middle and lower plexus. 
    more » « less
    Free, publicly-accessible full text available May 6, 2026